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 This is a report on the fabrication and characterization of anisotropic, porous 

materials: functionally graded cellular and compositionally anisotropic aerogels. This 

new class of materials was fabricated by photopolymerization of selected regions of a 

homogeneous monolith using visible light. Visible light is not significantly absorbed and 

not significantly scattered by organic molecules and oxide nanoparticles in wet gels and 

it allows fabrication of deeply penetrating, well-resolved patterns. Simple variations of 

the exposure geometry allowed fabrication of a wide variety of anisotropic materials 

without requiring layers or bonding. 
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Chapter 1: Silica Aerogel Reinforcement 
 
 

1.1 Motivation  

 

 Silica aerogel was first produced by Samuel Kistler in 1931 on a bet with Charles 

Learned about who could replace the liquid in a jelly with gas without causing 

shrinkage. And on that, silica aerogel was born. Silica aerogel is an extremely porous 

silicon dioxide material which, because of its high surface area and extremely low 

density, is a very promising material for a list of applications. These properties include a 

very low thermal conductivity (0.01 W /(m·K)), relative chemical inertness, an 

extremely low density (0.01 g/cm3), a surface area as high as 1200 m2/g, it can 

withstand temperatures lower than 950°C without deformation for long periods of time 

and temperatures approaching 1200°C for short intervals, has a refractive index as low 

as 1.01, and can be made almost optically clear.1-4 Additionally, using a suitable olefin, 

one can modify the surface of the pore wall and derivatize the walls to allow for a 

desired reaction setting.5  

 However, even with all of these remarkable properties, aerogels have only been 

used for high-end and niche applications due to a few major drawbacks. First, and most 

importantly, aerogels are extremely mechanically weak.5 This is due in large part to the 

fact that aerogel is roughly composed of 95% air and 5% silica. The glass sponge 

nature should not come as a surprise to anyone, however for it to be handled easily, 

improvements have to be made.  The second drawback of aerogels is that they must be 
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supercritically dried to remove the solvent. Supercritical drying requires you to take a 

fluid/gas beyond its supercritical point which can be very slow as well as costly. For 

example, ethanol requires a temperature of at least 270° C and pressure in excess of 

1000 psi. Because of these factors, the handling and manufacturing costs of making 

monolithic aerogels make it very difficult to scale up and are large contributing factors 

to the niche applicability of aerogel.4  

 Some progress has been made over the past decade to resolve both issues.4 This 

work will only concern itself with the problem of mechanical weakness, which appears 

to be a more limiting factor for the industrial development of silica aerogel. Several 

groups have made attempts to rectify this problem and their approaches will be 

explained in the next section.4-10 

1.2 Literature Review  

  

 Several approaches have been taken to help improve the mechanical properties 

of aerogels. Layering sols of different densities has been attempted with some success, 

but due to the time consumptive nature, is not yet feasible. Cross-linking the oxides and 

adding structural support via a polymer backbone has also been attempted.4 Polymer 

reinforcement was our primary area of focus because of the versatility of the technique 

as well as some unresolved issues left by previous works.5 

 In 2004, Leventis et al. published a communication in Chemistry of Materials 

where they reported about polymer reinforcement in surface-modified silica aerogels. In 

this communication, a polymer (polyurea) was used to structurally reinforce the sol-gel. 
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This polymer was only used as shown in Figure 1.1. Leventis et al. used an amine 

functional group that leaves a dangling olefin on the surface of the silica gel wall (as 

explained more in 2.1: Synthesis) which would give a bonding site for an active 

monomer, in this case, hexamethylene diisocyanate oligomer (Figure 1.2). This bonding 

site allows for the polymer to conformally coat the silica aerogel surface and be 

anchored chemically as shown in the SEM images in Figure 1.3. 

 In their communication, Leventis et al. claim a modulus of elasticity increase of a factor 

of 100 times over native silica aerogel due to the polymer reinforcement as shown in 

Figure 1.4. However, these gains came at the expense of an increased density and 

decreased surface area. Native aerogels had a density of 0.189 g/cm3 as compared to 

the amine-modified, cross-linked aerogels which had a density of 0.439 g/cm3. 

Correspondingly the surface area for a native gel was 997 m2/g and for an amine-

modified, cross-linked aerogel the surface area was 178 m2/g.  

 So while Leventis et al. were able to get sizeable mechanical strength gains, the 

additional polymer took up space in the pores of the aerogel which adversely affected 

the porosity and the density. The thermal conductivity also increased from 0.01 W 

/(m·K) to 0.04 W /(m·K). This increase of a factor of 4 is very significant because, for 

reference, Styrofoam has a thermal conductivity as low as 0.03 W /(m·K) while having a 

density very comparable to some of the least dense isotropically reinforced aerogels. 

This means that isotropic reinforcement of aerogels will at best yield materials very 

similar in nature to Styrofoam, but with significantly increased costs and processing 

times.  
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 Since Leventis et al. released their original publication in 2002, many different 

types and combinations of polymers, synthesis techniques, and conditions have been 

used to improve the mechanical properties of the aerogel, but unfortunately, very few 

results have shown any significant progress in altering the mechanical properties 

without adversely affecting the thermal conductivity or porosity of the aerogel.4  

 

Chapter 1 Figures 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 
Structural reinforcement of Silica 
Aerogels via surface modification and 
polymer crosslinking 
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Figure 1.2 
poly(hexamethylene diisocyanate) which 
was used as a cross-linker by Leventis et 
al 

 
Figure 1.3a 
SEM image of a 
native silica aerogel 

Figure 1.3b 
SEM image of a 
derivatized silica aerogel 
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Figure 1.4 
Mechanical properties with respect to 
density given by Leventis et al 
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Chapter 2: Experimental Section 
 
 

2.1 Synthesis of Silica Aerogels 
 
  
 The synthesis of a native silica aerogel typically begins with the use of some 

form of silicon alkoxide such as tetramethyl orthosilicate (TMOS), which is shown in 

Figure 2.1, as your source of silica. When TMOS is in the presence of water it reacts 

with water which strips the TMOS of its organic group and replaces it with a hydroxyl 

group which bonds to the silicon. This process is called hydrolysis and these along with 

the condensation reaction are shown in Figure 2.2. Now, this newly formed hydroxyl 

group will then find other OH or OR groups and react to form a polymer while still 

suspended in a solvent (typically ethanol). This polymer chain is formed of siloxane 

bonds which then expand by either an alcohol-producing or water-producing 

condensation reaction.4  

 This causes all of these siloxanes to begin to form large groups which then begin 

to nucleate and grow together. This process is catalyzed by being in a basic 

environment. For this reason, in our reaction, native silica gels were synthesized using 

ammonium hydroxide. After the particles have completely aggregated, a solid monolith, 

or in this case a wet-gel, is formed which has the suspending solvent now filling its 

pores.5 The next step for a native aerogel is to remove the solvent using supercritical 

drying. This topic will be discussed in more detail in Section 2.3. 

 Our synthesis method for silica aerogels differs in two ways. Firstly, all of our 

reactants are mixed during the gelling process. This one-pot synthesis is very desirable 
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for the improvement of applicability. This means we will often choose photoinitiators 

which are also basic so that they serve the dual purposes of catalyzing the gelation as 

well as providing radicals for the photopolymerization. Secondly, because our intention 

is to photopolymerize a monomer and have it conformally coat the sides of our silica 

gel, we need to make sure that our walls are derivatized by the desirable olefins. 

  As mentioned in Section 1.2, Leventis et al. had previously shown that they 

were capable of doing this and for this reason we also derivatized our walls using 

trimethoxysilylpropyl methylmethacrylate(MMA-TMOS) which is shown in Figure 2.3. 

This left us with a reactive group for our monomer to stick to that was also attached to 

the gel wall. So using a small concentration of MMA-TMOS in addition to our TMOS, we 

were able to, in a one-pot synthesis, create a derivatized silica aerogel which had 

bonding sites for our monomer.6 As mentioned in the literature review, the ability to 

force our polymer to adhere to the surface of the gel creates a great deal more 

structural stability as well as allowing for lower monolith densities.  

 

2.2 Laser Modification of Sol-gel 
 
 

2.2.1 Ultraviolet System  
  
 Free radical polymerization is a method of polymerization by which 

a polymer forms by the successive addition of free radical building blocks. 

Photopolymerization using free radicals can be done using what is called a 

photoinitiator. In our case 2,2′-azobis-isobutyronitrile (AIBN), Figure 2.4, was used due 
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to it being highly soluble in the monomer and solvent as well as its high absorption of 

ultraviolet light. To go from monomer/initiator solutions to producing polymers by free 

radical polymerization, one must first begin initiation.  

 This step begins when an initiator decomposes into free radicals in the presence 

of monomers. In our system, due to the instability of carbon-carbon double bonds in 

the vinyl monomer, the unpaired electrons in the radical will readily react with our 

monomer to begin polymerization. In this reaction, the active center of the radical takes 

one of the electrons from the double bond of the vinyl monomer, leaving an unpaired 

electron to appear as a new active center at the end of the polymer chain. Addition of 

new monomers then readily occurs and our chain grows. This process is shown in 

Figure 2.5.6 

 Using this method, luminescent patterns were generated by exchanging the 

solvent of a gel with an acetonitrile solution containing 1% (w/w) of 9-vinylanthracene 

(Figure 2.6) and 0.1% (w/w) of AIBN. To create uniformly cross-linked monoliths 

samples were exposed to a commercial 15 W black light or to a 30 mW He-Cd laser 

(325 nm) expanded by a divergent lens. To create surface patterns, a 175 mW 

continuous wave (CW) laser (Coherent MBD-266) emitting at a wavelength of 266 nm 

was employed. 

 The 266 nm wavelength was strongly absorbed by both the matrix and the 

organics, resulting in patterns that did not penetrate more than a few millimeters. To 

create three dimensional patterns the third harmonic (354 nm) of a pulsed yttrium 

aluminum garnet (Nd:YAG) laser (EKSPLA 312 G) was employed. The pulse duration 
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was 150 ps and they were focused inside the bulk of the monolith by a lens with a focal 

length of 100 mm. The mean pulse energy was kept below about 10 mJ to prevent 

damaging the matrix. This was limited however by the strong absorption of both the 

initiator and the organic solvents used.6 For this reason, a significant amount of the 

beam was absorbed before reaching the focal point of the laser. Detailed features were 

obtained with a size below about 30 µm. Exposure times were between 2 and 10 min 

when a laser was employed and up to 48 h for exposure with a black light (λ ≈ 370 

nm). After exposure, monoliths were washed repeatedly with toluene to remove 

unreacted precursors that were not readily attached to the walls. Afterwards, gels were 

washed with ethanol to prepare them for supercritical drying.  

 One of the major drawbacks of most conventional photoinitiators is that they are 

radicalized by ultraviolet (UV) light, which has several disadvantages for fabrication of 

anisotropic materials.6 Short-wavelength UV light does not penetrate deeply within a 

monolith because of absorption of both the organics, but also the monolith itself. More 

importantly scattering from the polymer and from the oxide backbone prevents 

fabrication of well-defined patterns that reach deep into the bulk. 

2.2.2 Visible System 

 Our system for free radical photopolymerization using visible light is very similar 

to that of our UV system, but with a few modifications to improve reactivity and 

significantly reduce scattering and undesirable absorption. These goals were 

accomplished by using a more reactive monomer, Hexanediol diacrylate, a radical 

polymerization catalyst, pentaerythritol tetra-(3-mercaptopropionate), and a new visible 
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light initiating system which are all shown in Figure 2.6-10. The coinitiators in our new 

system are a well-studied system which was described thoroughly by Bowman et al. in 

The Journal of Polymer Science: Part A: Polymer Chemistry in 2009. This new system 

uses a dye, Eosin Y, a tertiary amine as a coinitiator, N-methyldiethanolamine, and a 

monomer to initiate polymerization. 

 In the abovementioned paper, Bowman et al. describe how even in the presence 

of high concentrations of polymerization inhibitors (dissolved oxygen, radical 

scavengers, etc) polymerization was still able to be initiated using visible light. This new 

coinitiator system has the flexibility to be used with a wide variety of chemistries due to 

the robust efficiency of radical generation. This new flexibility coupled with our catalyst 

greatly increases the mobility and availability of radicals in exposed regions. This 

increase in the number of radicals is very favorable for our new monomer which unlike 

our UV monomer, has two vinyl bonds which can be radicalized and linked with other 

monomers.10 

 Because of the strong absorption of green light by our dye, samples were 

exposed to the green (532 nm) light of a diode-pumped solid state laser (Coherent 

Verdi) operated with a power of 1W. To achieve functionally graded materials, the 

beam was expanded through a lens so as to cover the diameter of the sample. The 

cylindrical samples were then exposed longitudinally so that power density would 

diminish as the beam width increased along the axis parallel to the beam exposure. 

Samples which were photocross-linked in only one specific region were obtained by 

exposing transversely to an expanded beam. Samples were rotated at half the exposure 
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time to ensure an even dose over the exposed region. To create grid patterns, a 

pinhole was placed between the sample and the laser beam. The sample was then 

moved by an X-Y programmable translation stage (NewportXPSC-8) along a 

predetermined path.6,7 Exposure times were between 2 and 15min for the large-scale 

patterns; grids were obtained by scanning the sample in front of the beam with a 

velocity of 1 mm/s. After exposure, samples were washed in toluene to terminate 

polymerization as well as remove any unreacted monomer/initiator from the monolith.  

 

2.3 Supercritical Drying of Silica Aerogels 

 

After exposure, monoliths were washed repeatedly with excess amounts of ethanol to 

remove unreacted precursors that would create a pressure differential within the 

aerogel because of differing supercritical points. For drying, we employed a 2 liter Parr 

pressure vessel equipped with three external heaters supplying a maximum power of 

800 W. The samples were placed inside the vessel and about 650 ml of excess ethanol 

were added to prevent complete evaporation of the solvent within the pores of the gels 

before the supercritical temperature was reached. The vessel was then heated to reach 

supercritical conditions for ethanol (240°C, 60.6 atm); left for about 30 min at the 

supercritical temperature and pressure and then the vaporous ethanol was then 

evacuated until no solvent remained in the vessel.4  

 As the substance in a liquid body crosses the boundary from liquid to gas, the 

liquid begins to gradually change to a gas, while the volume of the liquid shrinks. In a 
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heterogeneous environment, surface tension formed at the liquid/gas interface resists 

the change. Delicate structures, such as the pore structure of aerogel, tend to be 

broken apart by this surface tension at the liquid–solid interface.4 

 Supercritical drying goes around the line to the right, on the high-temperature, 

high-pressure side Figure 2.11. This route from liquid to gas does not require any phase 

change, but instead passes through the supercritical region, where the distinction 

between gas and liquid ceases to apply. Densities of the liquid phase and vapor phase 

become equal at the critical point of drying which creates a system where there is no 

surface tension between the fluid and the walls. Once venting begins (reducing 

pressure), the solvent is removed, and due to the temperature, the solvent goes into its 

gaseous form which does not create surface tension with the pore walls upon 

extraction. Once the solvent is completely removed, only the aerogel, with no solvent, 

remains. A schematic of the drying vessel is shown in Figure 2.12 

Chapter 2 Figures 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
Figure 2.1 Tetramethylorthosilicate 
(TMOS) 
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Figure 2.2  
Hydrolysis and Condensation in Silica 
Aerogels 

 

Figure 2.3 
trimethoxysilylpropyl 
methylmethacrylate 
(MMA-TMOS) 

 

Figure 2.4 
Azobisisobutyronitrile 
 

 

Figure 2.5 
Photoinitiation of AIBN 
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Figure 2.6 
9-vinylanthracene 

 

Figure 2.7  
Hexanediol Diacrylate 

 

Figure 2.8 
Pentaerythritol tetrakis(3-
mercaptopropionate)  
 

 

Figure 2.9 
Eosin Y 

 

Figure 2.10 
diethanolmethylamine 
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Figure 2.11 
Possible phase changes 
Red being Supercritical path 

 

Figure 2.12  
Schematic of a Supercritical Drier 
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Chapter 3: Results 
 
 

3.1 SEM / AFM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Representative SEM images of monoliths supercritically dried in ethanol after 

photopolymerization are shown in Figure 3.1a. Due to the electrically insulating 

properties of silica aerogels, samples were sputtered with a thin layer of platinum to 

increase the electron generation. Low magnification images showed a relatively flat and 

homogeneous surface for the samples which were derivatized.7 

 This is highly indicative of a lack of aggregated polymer sitting on the surface of 

the aerogel. This runs contrary to our native gels which showed varying sized 

aggregates of polymer on littered all over the surface. This is consistent with the 

presence of large polystyrene particles which was confirmed by the optical analysis and 

Figure 3.1a 
Derivatized Silica Aerogel 

Figure 3.1b 
Underivatized Silica Aerogel 
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Raman analysis.7 Optical analysis and Raman Spectroscopy results will be covered in 

greater depth in Section 3.3 and Section 3.4 respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 High magnification images showed further differences. In silica aerogels, primary 

silica particles with a diameter in the 2-10 nm range aggregate to form secondary 

agglomerations with a diameter in the 20-40 nm range. Primary and secondary 

aggregations were clearly visible in native gels, as shown in parts d and f of Figure 3. In 

Figure 3.2c,e 
Derivatized Silica Aerogel 
 

Figure 3.2d,f 
Underivatized Silica Aerogel 
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derivatized gels only the secondary aggregations were clearly visible (Figure 3c,e). 

Overall, the SEM results are consistent with those obtained from samples cross-linked 

by thermally activated polymerization and indicate that a network of cross-linked silica 

nanoparticles is formed by photo-crosslinking. 

  
 
 The SEM results were further supported by AFM. Because of the low density of 

aerogels, the AFM tip tended to lift the samples generating high noise levels. Therefore, 

xerogels were employed. Figure 3.3a shows the typical morphology of a derivatized 

sample before photopolymerization. Granular aggregates with a size of tens of 

nanometers could be resolved, which likely corresponded to the secondary 

aggregations.6 After polymerization the size of these aggregations increased (Figure 

3.3b).7 

 

 

 
Figure 3.4a 
Derivatized Silica Aerogel 

Figure 3.4b 
Underivatized Silica Aerogel 



www.manaraa.com

20 

3.2 FT-IR / Raman Spectroscopy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 FT-IR spectroscopy measurements are shown in Figure 3.5 and provide some 

insight on the parameters affecting the cross-linking process. Native aerogels exhibited 

broad and intense bands below 1300 cm-1 which are characteristic of silica. The most 

intense of these bands was in the 1100-1200 cm-1 range and was attributed to Si-O 

stretching. In photopolymerized samples (both native and derivatized) we also detected 

a broad band around 1620 cm-1 which was attributed to modes of the aromatic ring of 

polystyrene.11 In samples derivatized with vinyl and methacrylate, additional small and 

narrow bands were detected which most likely were due to the derivatizing moiety. 

 These were at 696 cm-1, which is close to the range of CH2 rocking; at 1409, 

1449, and 1493 cm-1, which are within the range of C-H bending; and at 1603 cm-1, 

which is within the range of CdC stretching. We also noticed that the intensity of the 

 
Figure 3.5 
FT-IR Spectrum 
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silica bands decreased in derivatized samples. The decrease in the intensity of the silica 

vibrations is similar to that observed in oxide-polymer core-shell nanoparticles, and it is 

a further indication that in derivatized samples the pore walls are coated with the 

polymer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In Figure 3.6, Raman Spectroscopy measurements are presented which further 

corroborate our findings. The strong peak at 1636cm-1 is from the Carbon-Carbon 

double bond. The sharp drop of between exposed and unexposed regions is a strong 

indicator of allyl polymerization and in conjunction with FT-IR gives a good idea of the 

elemental makeup of our differing regions.  

 

 

Figure 3.6 
Raman Spectrum of Exposed Silica Aerogel 
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3.3 Images 

3.3.1 UV System 

 The below images were taken using a digital camera. They all represent images 

taken using 9-vinylanthracene as the monomer. The 9-vinylanthracene can be shown 

fluorescing under black light illumination. In Figure 3.7, one can see that the pattern 

was readily transferred from USAF mask to the aerogel. The yellow coloration is the 

unwashed 9-vinylanthracene which is fluorescing in the background. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As mentioned above, pulse laser lithography was also employed with the UV 

system to attempt to make deeper penetrating, high resolution patterns. Because the 

266nm wavelength laser did not penetrate into the gel due to absorption, the third 

harmonic of the Nd:YAG laser was used. The 355nm wavelength allowed for better 

 

Figure 3.7 
Gel Exposed using the UV System a 1951 USAF 
resolution test mask. 
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penetration depth, but due to scattering and some absorption by solvents as well as the 

initiator/monomer, the resolution and depth were reduced. Below in Figure 3.8, an 

image can be seen with a pulse laser treated sample. Due to fluorescence by the 

solvent, the gel glows blue. The white, vertical running line is polyvinylanthracene.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Below is an example of a native aerogel(3.9a) and a native, polymer-saturated 

sample(3.9b). The polymer saturated sample did not have a derivatized surface. 

Because there were no binding sites for the polymer on the silica matrix, polymer grew 

and simply clogged the pores. This is an example of what previous works had 

attempted to do with polymer reinforcement before Leventis et al. The white coloration 

comes from the large abundance of polymer which fills the pores of the aerogel. 

 
Figure 3.8 
Gel exposed using the UV System (λ ≈ 
355nm) and 9-Vinylanthracene. Sample 
was focuses through a 100mm focal length 
lens.  
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 Figure 3.10, an image of a functionally graded aerogel is presented where its 

cross-linked region is glued to a glass slide with cyanoacrylate adhesive. Shearing of the 

glued region from the rest of the aerogel was not observed, as is instead, commonplace 

for native aerogels. 

 Presented in Figure 3.11, a bolt was threaded into a hole which was drilled and 

tapped for a 2–64 thread inside a polymer reinforced region of aerogel. The structural 

support provided by the polymer backbone allows for local forces to be dampened and 

not collapse or shear the gel structure.  

 

 

 

 

 

Figure 3.9a 
Native Silica Aerogel 

Figure 3.9b 
Polymer Saturated 
Native Silica Aerogel 
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 In Figure 3.12 one of the photopolymerized gels is presented which has been 

moved on the X-Y stage. The pattern can be placed with speeds ~1mm/s and 

penetrates well beyond 25 mm with only a very limited amount of spreading or loss of 

resolution. Polymer growth/shrinkage can frustrate attempts at small details, but by 

adjusting dye concentration, speed, and laser power, one can compensate for the 

projected polymer size fluctuations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 3.10 
Visible Patterned Silica 
Aerogel fastened to a 
glass slide. 

Figure 3.11 
Reinforced Aerogels are 
mechanically strong enough 
to be drilled, tapped, and 
threaded with small bolts.  

 
Figure 3.12 
Patterned Aerogel  
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 The below image (Figure 3.13) contains a test which used contact angles to 

measure the hydrophobicity of the sample. Because the polymer and surface functional 

group are both hydrophobic where as native aerogel tends to be hydrophilic, one can 

see determine the amount of polymer present along a gradient on ones sample by 

simply seeing the angle between the water droplet and the aerogel surface. 

 If you notice, the polymer gradient can clearly be seen in the image as the white 

haze. As one moves to the right, the gradient diminishes to very little polymer present. 

At the very far left, the water beads very tight. This indicates strong hydrophobicity. If 

one looks at the very far right, the bead can be seen almost completely flat. This 

indicates a strong hydrophilicity. As one follows the length of the sample, one can see 

that the contact angle of the water beads, becomes smaller and smaller as it you move 

towards the right. This is very clear proof that a polymer gradient has been formed 

during exposure.  

 
 

 

Figure 3.12 
Aerogel patterned using visible system on the 
translation stage. 

 
Figure 3.13 
Test for functionalization of hydrophobicity. Polymer side is visible on the left 
and is the most hydrophobic due to hydrophobic polymer cross-linked onto 
the derivatized pore Figure 3.13 
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Chapter 4: Conclusions 
 

4.1 UV System 

 
 In the above work, a method has been shown that allows for bulk sol-gel 

monoliths with spatially modulated physical properties to be produced by 

photocrosslinking. Topical exposures as well as better penetrating methods have been 

shown and obtained by using suitable light sources and illumination conditions. This 

method is simple and extremely versatile because it combines the flexibility of sol-gel 

and polymer chemistry. While some limiting factors still remain when using ultraviolet 

lithography inside of silica, this was more a proof of concept and there is still a large 

degree of freedom available to make this system worth pursuing further in the future.  

 With this system, multifunctional sol-gel monoliths can now be realized which 

have potential applications in microfluidics, optics, mechanics, and acoustics where the 

physical properties of aerogel are strongly desirable, but require some slight alteration 

of the properties. Due to the wide array of polymer chemistry available with this 

technique, one could very easily tune the properties of the aerogel to within acceptable 

tolerances.  

 

4.2 Visible Light System 

 
 Similar to the ultraviolet system, photopolymerization with visible light allows 

fabrication of anisotropic aerogels and ceramic materials. However, due to the 
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transparency of silica aerogels to the visible spectrum, the tuneability of the dye/amine 

coinitiator system, and the reduced scattering of visible light, materials with very 

different characteristics can be produced by simple variations of the illumination and/or 

processing conditions without a great deal of difficulty or cost.  

 The above materials represent a new class of porous anisotropic solids that are 

difficult to fabricate with conventional polymerization/reinforcement methods and pave 

the way for several practical applications. For instance, functionally graded aerogels are 

likely candidates for ultra-lightweight energy absorbers. Selective reinforcement of 

regions subject to shear and mechanical stress allows integration of native aerogels into 

mechanical systems. Honeycomb patterns increase the compressive strength of an 

aerogel along the load-bearing direction while the monolith retains the porous structure 

of the native material for minimum thermal conductivity and maximum acoustic 

attenuation. 

 The problem of the need for supercritical drying still hamstrings the adoption of 

silica aerogels for industrial adoption, but the shortcomings of the isotropic methods 

shown earlier have for the most part been minimized if not removed altogether. Work 

will need to continue to tailor aerogels to meet current industrial standards and 

tolerances, but with the systems presented here, several major issues have been 

resolved without adding any considerable cost to the processing.  
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